
Iron Spring Software Using INDEXED Files 1

An indexed file is a file where the
sequence of records is determined
by a data element known as a key,
recorded in a separate file. Iron
Spring PL/I support for indexed files
is similar to IBM mainframe ISAM
files or VSAM Key Sequenced Data
Sets (KSDS). Indexed file support
is currently available only for Linux.

Indexed file support is a recent
enhancement, and should be
considered beta in the current
release

Declaring INDEXED Files

You can declare an indexed file by coding the attribute
ENVIRONMENT(INDEXED).
Unless otherwise specified the file defaults to:

KEYED ENVIRONMENT(V RECSIZE(1024))
You could also declare the file with record format F or U instead of V, and any
RECSIZE up to 1024 bytes. Additive attributes you can specify are DIRECT or
SEQUENTIAL, and INPUT, OUTPUT, or UPDATE. The BACKWARDS and
EXCLUSIVE attributes are currently not supported, and other environment
options are not applicable to indexed files. You can code the KEYED attribute,but
it is implied. ENVIRONMENT(VSAM) is a synonym for ENVIRONMENT(INDEXED).

An example of an indexed file declaration is:

DECLARE DIREC FILE RECORD KEYED ENVIRONMENT(INDEXED);

Opening INDEXED Files

When you open an indexed file you can specify the attributes INPUT, OUTPUT,
or UPDATE, and DIRECT or SEQUENTIAL, only if you didn’t code them in the
file declaration – conflicting attributes will raise the UNDEFINEDFILE condition at
open time. You can code the TITLE option on the open statement to supply a
name for the files. If you don’t provide a title the declared file name, translated to
upper-case, is used. Each indexed “data set” consists of two separate files, xxx.I

Version 1.0 September 2017

Table of Contents
Declaring INDEXED Files....................................1
Opening INDEXED Files......................................1
Closing INDEXED Files.......................................2
Reading INDEXED Files.......................................2
Writing INDEXED FILES.....................................3
Updating INDEXED Files.....................................4
Linking Programs that use INDEXED Files..........6
Limitations...6
Sample Code..7
Technical notes..12

Iron Spring Software Using INDEXED Files 2

and xxx.D for the index and data components respectively, where xxx is the value
of the title or filename.

If you open an existing file as OUTPUT, records you write will be appended to the
existing data. You have to delete the existing data and index files in order to start
with a new, empty file.

If you open a file as INPUT or UPDATE the file must exist, or UNDEFINEDFILE
is raised.

An example of an open statement for an indexed file is:

OPEN FILE(DIREC) DIRECT UPDATE;
Error conditions:

• UNDEFINEDFILE - conflicting attributes between declaration and open
 INPUT or UPDATE file does not exist.

• ERROR - pblIsam signaled error

Closing INDEXED Files

To close an indexed file code a standard close statement. This closes both the
data and index components.

CLOSE FILE(DIREC);
If you don’t close a file it is normally closed when the program finishes execution.
Some execution errors may prevent files from being properly closed. It’s good
practice to close all files when you’re finished with them.

Error conditions:

• none

Reading INDEXED Files

You can read indexed files sequentially, in key order, or randomly by supplying
the key of the record you want. You can read input or update files, but not output.

To read a sequential file you must either indicate where the record is to be
placed, using the INTO or SET options, or code the IGNORE option to skip a
number of records. The optional KEYTO option will cause the key of the record
read to be stored. The EVENT option is ignored.

Version 1.0 September 2017

Iron Spring Software Using INDEXED Files 3

Here are examples of read statements for sequential indexed
files:

1.READ FILE(DIREC) INTO(OUTREC) KEYTO(NAME);
2.READ FILE(DIREC) SET(REC_PTR) KEYTO(NAME);
3.READ FILE(DIREC) INTO(OUTREC);
4.READ FILE(DIREC) IGNORE(2);

Statement (1) reads the next record from the file (in key order), stores the record
into OUTREC, and stores the record key in NAME. When all the records have
been read, the next read raises the ENDFILE condition. Statement (2) is similar
except that the read returns the address, in an internal buffer, of the record read
in the pointer REC_PTR.

Statement (3) is identical to statement (1), except that the key is not returned to
the caller.

Statement (4) will skip the next two records in the file and return no data. A
subsequent read will retrieve the next record after those two. IGNORE, without
the number in parentheses, will skip one record.

To read a direct file you need to specify where the record is to be placed, using
the INTO option, and the key of the record you want to read, using the KEY
option. The EVENT option is ignored. Here is an example of a read for a direct
file:

READ FILE(DIREC) INTO(OUTREC) KEY(NAME);
Error conditions:

• UNDEFINEDFILE – file not open INPUT or UPDATE
 READ IGNORE specified for a DIRECT file

• ENDFILE - Last record read for a SEQUENTIAL file
• KEY - No record with matching key, or key length is zero or

 greater than 255
• RECORD - Wrong length record for ENV(F) file

 Record length exceeds declared RECL for ENV(V)
• ERROR - pblIsam signaled error

Writing INDEXED FILES

You can write records to an indexed file in any order. You can write to output or
update files. If you open an existing file any records you write will be added to the
file. A write statement has the following format

WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);

Version 1.0 September 2017

Iron Spring Software Using INDEXED Files 4

The record you want to write, OUTREC, should be the declared length (RECL)
for files declared as ENVIRONMENT(F), and between 1 byte and RECL for
ENVIRONMENT(V). If you don’t specify this information RECL(1024) is the
default.

The key, NAME, can be between 1 and 255 bytes. Keys don’t all have to be the
same length, although this is recommended.

The LOCATE statement, an alternate form for sequential buffered output, is not
implemented in this release.

Error conditions:

• UNDEFINEDFILE – file not open OUTPUT or UPDATE
• KEY - record with matching key already exists
• RECORD - Wrong length record for ENV(F) file

 Record length exceeds declared RECL for ENV(V)
• ERROR - pblIsam signaled error

Updating INDEXED Files

You use the REWRITE statement to update existing records in an indexed file.
The file must be opened for UPDATE; the KEY condition is raised if the record
does not exist. Here are examples of rewrite statements for sequential indexed
files:

1.REWRITE FILE(DIREC);
2.REWRITE FILE(DIREC) FROM(OUTREC);
3.REWRITE FILE(DIREC) KEY(NAME);
4. REWRITE FILE(DIREC) FROM(OUTREC) KEY(NAME);

Statement (1) rewrites the last record read if it was read by READ SET, otherwise
it is a no-op,

Statement (2) rewrites the last record read using the contents of OUTREC.

Statements (3) and (4) rewrite the specific record identified by the key NAME. (3)
rewrites the last record read if it was read by READ SET, and (4) rewrites the
record using the contents of OUTREC.

Version 1.0 September 2017

Iron Spring Software Using INDEXED Files 5

Error conditions:

• UNDEFINEDFILE - file not open UPDATEKEY - No record with
 matching key, or key length is zero or greater than

255
• RECORD - Wrong length record for ENV(F) file

 Record length exceeds declared RECL for ENV(V)
 Previous read not READ SET

• ERROR - pblIsam signaled error

Version 1.0 September 2017

Iron Spring Software Using INDEXED Files 6

Linking Programs that use INDEXED Files

The interface module is included in the Iron Spring PL/I library, and will
automatically be linked if needed. The required library “libpbl.a” (see Technical
Details below) must be specifically included when you link a program that uses
indexed files.

The easiest way to link a PL/I program with C functions is to compile the PL/I
source to generate an object module, and then link with gcc.

The sample makefile “makefile.isam” is an example of compiling and linking the
two sample programs.

First compile the PL/I program and generate an object:

Next link the PL/I object with the required libraries:

The readme file for Linux section “Linking PL/I programs” includes additional detail
on linking.

Limitations

INDEXED files can have a record length from 1 to 1024 bytes. A single key is
allowed, with a length from 1 to 255 bytes. The key does not have to be
contained within the record. Records and keys are inherently variable length,
although a uniform record size can be enforced by declaring the file as
ENVIRONMENT(F). All characters are valid in both records and keys.

An INDEXED dataset consists of two separate components (files). These are
named xxx.I and xxx.D, where xxx is the value of the title or filename.

Version 1.0 September 2017

%.o: %.pli

${PLI} -C ${PLIFLGS} $^ -o $*.o

%: %.o

gcc -o $@ $^ ${ALTDIR}/fhs.o ${ALTDIR}/ghs.o \

-lprf -lpbl -static -zmuldefs -m32 -Wl,-M >$@.map

Iron Spring Software Using INDEXED Files 7

Sample Code

The following sample programs are taken from the IBM PL/I for MVS & VM
Programming Guide Release 1.1 (SC26-3113-01) pp.235-238.

The programs “loadsamp” and “updtsamp”, together with the makefile and data
to compile and run them are in the “samples” directory.

The following program loads a sample indexed dataset.

Version 1.0 September 2017

 TELNOS: PROC OPTIONS(MAIN);

 DCL DIREC FILE RECORD SEQUENTIAL KEYED
ENV(INDEXED),

 CARD CHAR(80),
 NAME CHAR(20) DEF CARD POS(1),
 NUMBER CHAR(3) DEF CARD POS(21),
 OUTREC CHAR(23) DEF CARD POS(1),
 EOF BIT(1) INIT('0'B);
 ON ENDFILE(SYSIN) EOF='1'B;
 OPEN FILE(DIREC) OUTPUT;
 GET FILE(SYSIN) EDIT(CARD)(A(80));
 DO WHILE (^EOF);
 PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
 WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
 GET FILE(SYSIN) EDIT(CARD)(A(80));
 END;
 CLOSE FILE(DIREC);
 END TELNOS;

Sample program “loadsamp”

Iron Spring Software Using INDEXED Files 8

Version 1.0 September 2017

ACTON,G. 162
BAKER,R. 152
BRAMLEY,O.H. 248
CHEESEMAN,O. 141
CORY,G. 336
ELLIOTT,D. 875
FIGGINS,S. 413
HARVEY,C.D.W. 205
HASTINGS,G,M. 391
KENDALL,J.G. 294
LANCASTER,W.R. 624
MILES,R. 233
NEWMAN,M.W. 450
PITT,W.H. 515
ROLF,D.E. 114
SHEERS,C.D. 241
SUTCLIFFE,M. 472
TAYLOR,G.C. 407
WILTON,L.W. 404
WINSTONE.E.M. 307

Sample input data, sample
output for “loadsamp”

Iron Spring Software Using INDEXED Files 9

The following program updates the sample dataset. The highlighted statement
had to be added due to different handling of ONCODE values.

Version 1.0 September 2017

 DIRUPDT: PROC OPTIONS(MAIN);
 DCL DIREC FILE RECORD KEYED ENV(INDEXED),
 ONCODE BUILTIN,
 OUTREC CHAR(23),
 NUMBER CHAR(3) DEF OUTREC POS(21),
 NAME CHAR(20) DEF OUTREC,
 CODE CHAR(1),
 EOF BIT(1) INIT('0'B);
 ON ENDFILE(SYSIN) EOF='1'B;
 ON KEY(DIREC) BEGIN;
 IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('NOT FOUND:',NAME)(A(15),A);
 IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('DUPLICATE:',NAME)(A(15),A);
 /* Following stmt added to sample program */
 IF ONCODE=50 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('KEY ERROR:',NAME)(A(15),A);
 END;
 OPEN FILE(DIREC) DIRECT UPDATE;

 GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)
 (COLUMN(1),A(20),A(3),A(1));
 DO WHILE (^EOF);
 PUT FILE(SYSPRINT) SKIP EDIT ('

',NAME,'#',NUMBER,' ',CODE)
 (A(1),A(20),A(1),A(3),A(1),A(1));

Sample program “updtsamp”
(1 of 2)

Iron Spring Software Using INDEXED Files 10

Version 1.0 September 2017

NEWMAN,M.W. 516C
GOODFELLOW,D.T. 889A
MILES,R. D
HARVEY,C.D.W. 289A
BARTLETT,S.G. 183A
CORY,G. D
READ,K.M. 001A
PITT,W.H.
ROLF,D.E. D
ELLIOTT,D. 291C
HASTINGS,G,M. D
BRAMLEY,O.H. 439C `

Sample input for “updtsamp”

 SELECT (CODE);
 WHEN('A') WRITE FILE(DIREC) FROM(OUTREC)

KEYFROM(NAME);
 WHEN('C') REWRITE FILE(DIREC) FROM(OUTREC)

KEY(NAME);
 WHEN('D') DELETE FILE(DIREC) KEY(NAME);
 OTHERWISE PUT FILE(SYSPRINT) SKIP
 EDIT('INVALID CODE:',NAME)(A(15),A);
 END;
 GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)
 (COLUMN(1),A(20),A(3),A(1));
 END;
 CLOSE FILE(DIREC);
 PUT FILE(SYSPRINT) PAGE;
 OPEN FILE(DIREC) SEQUENTIAL INPUT;
 ON ENDFILE(DIREC) EOF='1'B;
 READ FILE(DIREC) INTO(OUTREC) KEYTO(NAME);
 DO WHILE (^EOF);
 PUT FILE(SYSPRINT) SKIP EDIT(NAME,NUMBER)(A);
 READ FILE(DIREC) INTO(OUTREC) KEYTO(NAME);
 END;
 CLOSE FILE(DIREC);

 END DIRUPDT;

Sample program “updtsamp”
(2 of 2)

Iron Spring Software Using INDEXED Files 11

The following expected errors occurred:
1. HARVEY,C.D.W. could not be added as there was already a record on file.
2.PITT,W.H. had an invalid code (not A,C, or D)

Version 1.0 September 2017

BAKER,R. 152
BARTLETT,S.G. 183
BRAMLEY,O.H. 439
CHEESEMAN,O. 141
ELLIOTT,D. 291
FIGGINS,S. 413
GOODFELLOW,D.T. 889
HARVEY,C.D.W. 205
KENDALL,J.G. 294
LANCASTER,W.R. 624
NEWMAN,M.W. 516
PITT,W.H. 515
READ,K.M. 001
SHEERS,C.D. 241
SUTCLIFFE,M. 472
TAYLOR,G.C. 407
WILTON,L.W. 404
WINSTONE,E.M. 307

Sample file after running
“updtsamp”

 NEWMAN,M.W. #516 C
 GOODFELLOW,D.T. #889 A
 MILES,R. # D
 HARVEY,C.D.W. #289 A
KEY ERROR: HARVEY,C.D.W.
 BARTLETT,S.G. #183 A
 CORY,G. # D
 READ,K.M. #001 A
 PITT,W.H. #
INVALID CODE: PITT,W.H.
 ROLF,D.E. # D
 ELLIOTT,D. #291 C
 HASTINGS,G,M. # D
 BRAMLEY,O.H. #439 C

 `

Sample output of “updtsamp”

Iron Spring Software Using INDEXED Files 12

Technical notes

Iron Spring PL/I INDEXED file support uses an open-source (LGPL) package
“pblIsam,” by Peter Graf, written in the C language. Documentation for pblIsam
can be found at http://www.mission-base.com/peter/source/pbl/doc/isamfile.html.
Source for pblIsam is available on GitHub. A 32-bit version of pblisam is included
with the Iron Spring PL/I library in file “libpbl.a”.

pblIsam provides many more options than are used in the current PL/I
implementation including alternate indexes and duplicate keys.

A PL/I library procedure “isam” provides the mapping between PL/I statements
and options and pblIsam functions. This procedure will be linked with any
program that declares an INDEXED file.

Version 1.0 September 2017

https://github.com/peterGraf/pbl/archive/master.zip
http://www.mission-base.com/peter/source/pbl/doc/isamfile.html

