
On-disk filesystem structuresOn-disk filesystem structures

Jan van WijkJan van Wijk

Filesystem on-disk structures forFilesystem on-disk structures for
FAT, HPFS, NTFS, JFS, EXTn and ReiserFSFAT, HPFS, NTFS, JFS, EXTn and ReiserFS

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Presentation contentsPresentation contents

 Generic filesystem architecture

 (Enhanced) FAT(32), File Allocation Table variants

 HPFS, High Performance FileSystem (OS/2 only)

 NTFS, New Technology FileSystem (Windows)

 JFS, Journaled File System (IBM classic or bootable)

 EXT2, EXT3 and EXT4 Linux filesystems

 ReiserFS, Linux filesystem

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Who am I ?Who am I ?
 Jan van Wijk

 Software Engineer, C, C++, Rexx, PHP, Assembly
 Founded FSYS Software in 2001, developing

and supporting DFSee from version 4 to 15.x
 First OS/2 experience in 1987, developing parts

of OS/2 1.0 EE (Query Manager, later DB2)
 Used to be a systems-integration architect at a

large bank, 500 servers and 7500 workstations
 Developing embedded software for machine

control and appliances from 2008 onwards

Home page: https://www.dfsee.com/

https://www.dfsee.com/

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Information in a filesystemInformation in a filesystem

 Generic volume information
 Boot sector, super blocks, special files ...

 File and directory descriptive info
 Directories, FNODEs, INODEs, MFT-records
 Tree hierarchy of files and directories

 Free space versus used areas
 Allocation-table, bitmap

 Used disk-sectors for each file/directory
 Allocation-table, run-list, bitmap

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

File Allocation TableFile Allocation Table

 The FAT filesystem was derived from older
CPM filesystems for the first (IBM) PC

 Designed for diskettes and small hard disks
 Later expanded with subdirectory support to

allow larger hierarchical filesystems

 Supported natively by the OS/2 kernel and
almost any other modern operating system

 OS.2 (and Windows) enhancements usually
implemented in installable filesystems like
FAT32.IFS and VFAT.IFS

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

FAT(12/16) Volume layoutFAT(12/16) Volume layout

Boot-Record

Data area

Root-Directory

2nd FAT area

1st FAT area

 Bootsector, bootcode, labels
and geometry/size info (BPB)

 File Allocation table, 12/16 bits
for every cluster in the volume

 Exact duplicate of 1st FAT

 Fixed size, fixed position

 First data located at cluster 2
 Has clusters of filedata as well

as clusters with sub-directories

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

The Allocation TableThe Allocation Table

 The actual File Allocation Table has ONE value
for every allocation unit (cluster), values are:

 Free, the cluster is NOT in use, value is 0 (zero)
 2 .. max, location of the NEXT cluster in the chain
 EOF, end of file, this is the last cluster in the chain
 BAD, the cluster is unusable due to bad sectors

 Each value can be 12 bits, 16 bits or 32 bits
depending on volume and cluster size.

 A directory entry points to the FIRST cluster of
an 'allocation chain' representing each cluster
used by this file or directory, ending in an EOF

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

FAT Allocation ChainFAT Allocation Chain

 1cluster.dat 12

 anyfile.doc 23

 2cluster.dat 31

 fragment.c 43

 ?eleted.txt 127

Directory entries Part of the FAT area

EOF

EOF EOF

EOF32

16

44 15

1 2 3 4 5 6

10

20

30

40

50

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

FAT(32) directory entriesFAT(32) directory entries

 A basic FAT directory entry contains:
 8 character BASE filename
 3 character file extension
 1 byte attribute with RO, System, Hidden etc
 4 byte date and time information
 2 bytes (16-bit) cluster number for FIRST cluster
 4 bytes (32-bit) file size, maximum value 2 Gb

 OS/2, FAT32 and VFAT may add:
 2 bytes index value to OS2 extended-attributes
 2 bytes extra cluster number, making it 32-bit
 Extra create/access date and time fields (VFAT)
 Long Filename, storing a UNICODE filename up to

255 characters in entries preceding the regular one
(used in FAT32, and possibly VFAT)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Common problems with FATCommon problems with FAT

 Combined file-allocation and free space
administration (no redundancy) may cause:

 Lost clusters, allocated but no directory link
 Cross-links, clusters that are in more than 1 chain
 Undelete will be UNRELIABLE for fragmented files

because the cluster allocation is unknown after the
file is erased. (clusters will be marked FREE)

 OS/2 specific EA related problems:
 stored in one huge file “EA DATA . SF”
 The EA's for each file take up a full cluster in that file
 Linked from an index in the FAT directory entry,

can be damaged by other OS's or defragmenters

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

FAT32 Volume layoutFAT32 Volume layout

Spare-Boot (6-7)

Data area

2nd FAT area

1st FAT area

 Boot sector, boot code, label,
geometry and size info (BPB).
Location of Root directory,
free space size

 File Allocation table, 32 bits
for every cluster in the volume

 Exact duplicate of 1st FAT

 First data is located at cluster 2
(and often is the Root directory)

 Has clusters of file data as well
as clusters with directories

 Windows implementation limit:
only 28 bits of the 32 are used

Boot-Record (0-1)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Enhanced/extended Enhanced/extended FAT filesystemFAT filesystem

 Designed for HUGE removable media and fast
writing of large files (Video, Photo)

 Uses a separate allocation BITMAP file
 FAT entries are valid only for the fragmented files!

 Does NOT have a 'short' 8.3 filename!

 A journaled version (TexFAT) exists too,
probably Win-CE (embedded use) only

 Mandatory on SD-cards over 32Gb (SDXC)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Enhanced FAT features and limitsEnhanced FAT features and limits
 64-bit partition/file size, allows HUGE files
 Uses all 32 bits for FAT entries (FAT32: 28)

 Sector size 512 to 4096 bytes supported
 Sector and Cluster size are recorded in boot-area

 Cluster size up to 32 MiB (FAT32: 64 KiB)
 Larger clusters means smaller bitmap/FAT => FASTER

 Create, Modify and Access time, in mSec

 Max 256 MiB directories (> 2 million files)
 Directory entries can include a 'name-hash' to speed up

searching in huge directories dramatically

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Enhanced FAT directory entriesEnhanced FAT directory entries

 NOT compatible with other FAT filesystems!
 Each 32-byte entry has a specific 'type'
 Files/Directories have multiple entries:

 FILE entry: Attributes and date/time info, checksum
 STREAM entry: name-length, file sizes, first-cluster
 NAME entry: Name (fragment) up to 15 unicode chars

 Several other special purpose types exist:
 LABEL entry: Volume label, up to 11 unicode chars
 BITMAP entry: Flags + Cluster for Bitmap system file
 UPCASE entry: Flags + Cluster for Upcase system file
 VOLGUID entry: 16 bytes for a Volume GUID string
 PADDING entry: TexFAT (journaled), Win-CE only?
 ACT entry: Access Control Table, Win-CE only

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Enhanced FAT Volume layoutEnhanced FAT Volume layout

Spare-Boot (12-23)

 ...
Data area

1st FAT area

 Boot sector, boot code, (cluster)
size info. Root directory cluster,
OEM-area, boot checksum

(Followed by FAT-area 'alignment gap')

 File Allocation table, 32 bits
for every cluster in the volume

 2nd FAT optional, duplicate of 1st

(Followed by data area 'alignment gap')

 First data located at cluster 2
 Has clusters of (system) file data

and clusters with directories
 Bitmap and Upcase table located

in data area as 'system files'
 Bitmap, Upcase, Root directory

can be located anywhere!

Boot-Record (0-11)

Bitmap system-file

Upcase system-file

Root Directory

Regular file / directory

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

High Performance File SystemHigh Performance File System

 Designed by MS and IBM to overcome the
shortcomings of the FAT filesystem

 Based on UNIX-like Fnodes and B-trees

 Designed for larger hard disks (> 100 MiB)

 More redundancy, less sensitive to crashes
 B-trees, fragmentation is less of a problem

 Implemented as Installable Filesystem with
dedicated caching (HPFS.IFS, HPFS386.IFS)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS Features and limitsHPFS Features and limits

 FS-size up to 2 terabyte (2048 GiB) by design
 OS/2 implementation limit of 64 GiB due to

shared cache design (5 bits of 32 for cache use)

 Allocation in single 512-byte sectors

 Filename maximum length of 254 characters
 Support for multiple codepages for filenames

 B-trees used for allocation and directories

 Multi-level cache: Paths, Directories and Data

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS Volume layoutHPFS Volume layout

Boot-Record

Data area

Super block (10)
Spare block (11)

Volume Admin

Bitmap tables (14)

 Boot sector with HPFS boot code
 Fixed volume information

pointer to Root directory
 Variable volume information

 Division in 8 MiB data bands
 Codepage, Hotfix, Spare etc

 Preallocated DIR-blocks, 1%
in middle of volume (max 800 Mb)

 Separate Directory BITMAP

 File data + extra allocation and
directory blocks when needed

Directory band

Bitmap

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS data-bands layoutHPFS data-bands layout

 Data Bands:

 Area of a FIXED size of 8 MiB
(128 per gigabyte partition size)

 Each has a free space BITMAP
that is located at the start or at
the end (alternating) so they are
back-to-back

 Maximum UNFRAGEMENTED
file size is limited to nearly 16
MiB because of the bitmaps
located within each band

Data band (8 MiB)

Bitmap (2 KiB)

Data band (8 MiB)

Bitmap (2 KiB)

Data band (8 MiB)

Bitmap (2 KiB)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS File allocationHPFS File allocation

Super block

 Root-LSN FNODE
 (dir)
Alloc-LSN

FNODE
 (file)
Alloc-LSN
Alloc-LSN

Dir Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

Data-extent-1

Data-extent-2

Allocation example for a
file in the root directory
with 2 data fragments

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS Fnode layoutHPFS Fnode layout

 An Fnode is 512 bytes with fixed size info:
 Unique binary signature string 'ae 0a e4 f7'
 Sector number (LSN) for Parent directory
 First 15 characters of the filename (for undelete)
 Length of filename, and length of the file data
 Type of the Fnode, either File or Directory
 Allocation information, max of 8 LSN+size pairs
 DASD limits (user quota, HPFS386 only)

 Then, variable sized info may be present,
either in the Fnode itself or externally:

 Extended-attribute data (.longname, .icon etc)
 Access Control Lists (HPFS386 only)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS DirBlock layoutHPFS DirBlock layout

 A DirBlock is 2048 bytes with fixed size info:
 Unique binary signature string 'ae 0a e4 77'
 LSN for Parent and type Fnode or DirBlock (B-tree)
 Sector number for THIS Directory-Block
 Number of changes since creation of the block

 Then, variable sized Directory info with:
 A B-tree 'down' pointer (DirBlock LSN), OR
 Three date/time fields creation, modify, last access
 The standard (FAT, SHRA) attributes
 File data length and extended-attribute length
 Codepage number to use with the filename
 Variable sized filename, max 254 characters

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS Fragmented FileHPFS Fragmented File

FNODE
 (dir)
Alloc-LSN

FNODE
 (file)
Alloc-LSN

Dir Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

Extent 1

Allocation for a file in a subdirectory
with more than 8 data fragments
(Alloc sect holds 128 LSN+size pairs)

Dir Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

ALLOC
 SECT

Alloc-LSN
Alloc-LSN
 .
 .
 .
Alloc-LSN
Alloc-LSN

Extent 2

Extent n-1

Extent n

 *
 *
*

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS Superblock infoHPFS Superblock info

Data-bitmap
Data-bitmap

Data-bitmapBitmap Table

Bad block list
Directory block
Directory block
Directory block
Directory block
Directory block
Directory block
Directory blockDirectory

 bitmap

Information in the super block will only
change with a FORMAT or a CHKDSK
being run on the filesystem

Super block

Root-LSN
Bitmap table
Bad block list
Direct band
Direct bitmap

HPFS version
Last CHKDSK
Last Optimize
HPFS V-name

UserId table
(HPFS386)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

HPFS Spareblock infoHPFS Spareblock info

Spare block

Hotfix list
Codepage info

Spare dir block
Spare dir block

Super+Spare
Checksums

DIRTY status

Directory block
Directory block

Directory block

CP-info

CP-data
CP-data

Hotfix list

Information in the spare block may change
at any time the filesystem is mounted
(as indicated by a 'DIRTY' status)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

New Technology File SystemNew Technology File System

 Design started as new FS for OS/3 (32-bit OS/2)
before that was renamed to Windows NT

 Organization is like a database, everything, including
the FS administration itself is a FILE represented
by an entry in the Master File Table (MFT)

 Can handle extreme sizes due to 64 bit values used

 All data is represented by attribute values, with the file
data being the 'default data attribute'.
Supports multiple named data streams for a single file.

 Has native support for OS/2 EA's (as MFT attribute)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

NTFS limitsNTFS limits

 FS-size upto 2^64 clusters by design
 Some tools limited to 2048 GiB due to use of

32 bits for sector or cluster numbers

 Allocation in clusters of typically 8 sectors
 MFT record typical size is 1 KiB

 May hold all data for small files. Larger attributes are
stored externally, using runlists for the allocated space

 Filename of unlimited length, but limited by the
OS itself to a length of 254 characters

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

NTFS FeaturesNTFS Features

 Uses UNICODE for filenames to allow for
any character set (like codepages in HPFS)

 Usually includes a second ASCII 8.3 name too

 The FS keeps a transaction-LOG of all changes
to the FS-structures to allow quick recovery and
guarantee a consistent filesystem.

 This makes it a journaling filesystem
 File data itself is NOT part of the journal,

so may get lost/damaged after a crash!

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

NTFS Volume layoutNTFS Volume layout

Spare-Boot-Rec

MFT zone

MFT-file fragment

 Boot sector with NTFS boot code
 Some fixed volume-information,

pointer to MFT and MFT-spare

 MFT zone is reserved to reduce
fragmentation of the MFT, but will
be used for data if FS gets full

 MFT itself is a regular file, so CAN
and WILL get fragmented

 Rest of space is for all external
attributes (file data), not stored in
the MFT records themselves ...

MFT-file fragment

Boot-Record

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

NTFS special filesNTFS special files

 0 = $MFT Main MFT file, all files/dirs
 1 = $MFTmirr Mirror MFT file, 1st 4 entries
 2 = $LogFile Journalling log file
 3 = $Volume Global volume information
 4 = $AttrDef Definitions for attribute values
 5 = \ Root directory
 6 = $Bitmap Allocation bitmap
 7 = $Boot Boot record (8 KiB at sect 0)
 8 = $BadClus Bad cluster administration
 9 = $Secure Global Security information
 A = $Upcase Collating and uppercase info
 B = $Extend Extended info (NTFS 5, XP)

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

MFT special file remarksMFT special file remarks

 Special files upto MFT-A are fixed, and standard

 MFT B represents a directory with (for XP):

 $ObjId Object identification data
 $Quota User space restriction data
 $Reparse Reparse points, aliases in the

filesystem, much like Unix/Linux
soft-links (or WPS shadows)

 MFT numbers up to around 1A are reserved for
system file use by the FS itself, after that
the first user files will appear

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

MFT record layoutMFT record layout

 The MFT record is of a fixed size (1 KiB)
that starts with a fixed header containing:

 Unique signature string 'FILE'
 Sequence, generation and 'fixup' information
 Offset to first dynamic attribute in the record (0x38)
 Type of the MFT-record, either File or Directory

 After this a dynamic list of variable sized
attributes follows, these can be either:

 Internal (Self contained) when small
 External, using an allocation run-list pointing to one

or more clusters being used for the data
 Sparse, like external, but with 'empty' parts that do

NOT take up any space yet, on the disk itself

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

MFT attributes MFT attributes (from $AttrDef)(from $AttrDef)

 10 = $STANDARD_INFORMATION
 20 = $ATTRIBUTE_LIST (group of attributes)
 30 = $FILE_NAME
 40 = $OBJECT_ID
 50 = $SECURITY_DESCRIPTOR
 60 = $VOLUME_NAME
 70 = $VOLUME_INFORMATION
 80 = $DATA (default or named data stream)
 90 = $INDEX_ROOT (B-tree root, directories)
 A0 = $INDEX_LOCATION
 B0 = $BITMAP
 C0 = $REPARSE_POINT
 D0 = EA_INFORMATION
 E0 = EA (actual OS/2 extended attribute data)
 100 = LOGGED_UTILITY_STREAM

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Journaled File SystemJournaled File System

 Designed by IBM for its AIX operating system

 Based on UNIX-like structure with journaling
and multiple storage area capabilities

 Ported to an OS/2 IFS by IBM to allow huge
expandable filesystems with good performance
and journalling (fast crash recovery)

 Port released as 'open source' for Linux too
(Note: With a few additions, not 100% compatible!)

 Relies on LVM for some of its functionality

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

JFS Volume layoutJFS Volume layout

FSCK work area

 Boot sector, standard (label etc)

 JFS specific volume data with
pointers to lots of info :-)

 Duplicate of main super block

 Actual contents is grouped in
'aggregates' of fixed size holding
Inode tables and file data

 The 'journal' file area

 Temporary space for CHKDSK

Dir and File data

Inode bitmap

Boot-Record (0)

Super block (40)

Super block (78)

Inline log area

Inode table

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

Extended 2nd FS, Ext2, Ext3, Ext4Extended 2nd FS, Ext2, Ext3, Ext4

 Designed by the Linux community, based on
UNIX-like structures with many optimizations
for speed and several new features

 No current port for OS/2 (LVM compatible)

 Like JFS and other Unix derivates, there is
NO redundant filename info in the Inodes,
making file recovery much more difficult.

 EXT3 adds a journalling file to EXT2

 EXT4 adds many features, and raises size limits

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

EXT2/3/4, Directories and InodesEXT2/3/4, Directories and Inodes

 Directories are ordinary files, containing a
mapping between filenames and Inodes.

 There can be more than one directory entry
pointing to the SAME Inode! (hard links)

 The Inode contains file attributes including
ownership and a lists of allocated blocks.

 12 direct blocks, for files of up to 12 blocks
 Indirect, double indirect and triple-indirected blocks
 Ext4 may also use 'extents', much like runlists

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

EXT2/3/4 Volume layoutEXT2/3/4 Volume layout
 Boot sector, normally empty

may contain GRUB(2) or LILO
(is at start of the 1st block)

 Volume divided up in block-groups
with identical layout, each having:

 A super block copy, can be sparse,
with less copies of the super block

 Group description data
 Allocation bitmap for this group
 Usage bitmap for the inodes
 Fixed size Inode table for the group
 Rest of group are data blocks

 Ext4 may concentrate part of the info
in specific groups, for performance
and to allow larger contiguous files

Dir and File data

Inode bitmap

Boot-Record (0)
Super block

Group descriptors

Block bitmap

Inode table

Dir and File data

Inode bitmap

Super block

Group descriptors

Block bitmap

Inode table

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

ReiserFSReiserFS

 Designed by Hans Reiser

 Based on a database model using a single large
tree of information 'nodes'.

 The keys for the nodes uniquely identify them
and also determine the sequence in the file

 Space efficient since the nodes are variable in
size, and blocks can be filled up to 100%
(blocks may contain data for multiple files)

 Reiser includes a journalling mechanism

 FS-info: FAT, HPFS, NTFS, JFS, EXTn, Reiser © 2018 JvW

ReiserFS Volume layoutReiserFS Volume layout
 Boot sector, normally empty

my contain GRUB or LILO
 (is at start of the 1st block)

 There is just ONE super block

 Volume divided up in equal sized
chunks, that can be described with
a bitmap of exactly ONE block

 (32768 blocks for 4Kb block size)

 Rest of the blocks contain tree
nodes and leaves, with keys and
data areas that contain directory
and file data for the volume.

Dir and File data

Boot-Record (0)

Super block

Block bitmap

Dir and File data

Block bitmap

Dir and File data

Block bitmap

On-disk filesystem structuresOn-disk filesystem structures

Questions ?Questions ?

	Title
	What
	Who
	FSgen
	FatFS
	Fat16
	FATvalue
	Fat-alloc
	FATdir
	FatProb
	Fat32
	ExFAT
	Slide 13
	ExFAT-DIR
	ExFAT-Layout
	HPFS
	HPFSfe
	HPFSlo
	Bands
	HPFSa1
	Fnode
	DirBlock
	HPFSa2
	HPFSup
	HPFSpr
	NTFS
	NTFSlm
	NTFSfe
	NTFSlo
	NTFSsf
	NTFSrem
	MFTlo
	MFTatt
	JFS
	JFSlo
	Ext2
	ExtInode
	EXT2lo
	Reiser
	ReiserLo
	Q?

